Телефорум. Дискуссионный клуб

Теоретические основы электроники. М. Е. Евсеев

Электрическая цепь, ее элементы и параметры

Электрическая цепь

 Определение

 Электрической цепью называется совокупность электротехнических устройств, создающих замкнутый путь электрическому току. Она состоит из источников (генераторов) энергии, приемников энергии (нагрузки) и соединительных проводов. В цепи могут быть также различные преобразователи (играют роль как роль источников, так и приемников), защитная и коммутационная аппаратура.

   В источниках неэлектрические виды энергии преобразуются (в соответствии с законом сохранения энергии) в энергию электромагнитного поля. Так, например, на гидроэлектростанциях энергия падающей воды (энергия гравитационного поля) преобразуется в энергию электромагнитного поля. В приемниках энергия электромагнитного поля преобразуется в тепловую и другие виды энергии. Кроме того, некоторая часть энергии запасается в электрических и магнитных полях цепи.

   Электромагнитные процессы в электрической цепи описываются с помощью понятий о токе, напряжении, электродвижущей силе (ЭДС), сопротивлении, индуктивности и емкости. Буквенные обозначения этих, а также других величин, используемых в этом учебном пособии представлены в табл.1.1. Там же дана их русская транскрипция и единицы измерений. Заметим здесь, что ЭДС, токи и напряжения, изменяющиеся во времени, обозначаются строчными латинскими буквами е, i, u, а ЭДС, токи и напряжения, неизменные во времени, обозначаются заглавными латинскими буквами E, I, U.


   Графическое изображение электрической цепи и ее элементов


   Графическое изображение электрической цепи называется ее схемой. В схеме различают ветви, узлы и контуры. Ветвь – это часть схемы, состоящая только из последовательно соединенных источников и приемников. Узел – точка схемы, в которой сходятся не менее трех ветвей (ветви начинаются и заканчиваются на узлах цепи). Контур – часть схемы, образованная ветвями; число контуров определяется числом вариантов обходов по ветвям цепи. На рис.1.1 даны структурные схемы трех электрических цепей и указано количество ветвей узлов и контуров в каждой из них.

Принятые в настоящем учебном пособии графические обозначения основных элементов цепи, показаны на рис.1.2.

На этом рисунке : 1 - источник ЭДС; 2 - источник тока; 3 - соединительный провод; 4 - сопротивление R цепи; 5 - индуктивность L цепи; 6 - емкость С цепи; 7 - двухполюсник (цепь с неизвестной структурой, имеющая два входных зажима).

   В цепях постоянного тока (рис.1.3,а) направление действия ЭДС источника принято указывать в сторону того зажима, на котором образуются положительные заряды. Направление тока во внешней цепи принято указывать от положительно заряженного полюса (зажима) источника к отрицательно заряженному. Направление действия напряжения в приемнике всегда указывают в ту же сторону, что и направление действия тока.
   В цепях синусоидального тока (рис.1.3,б) принято обозначать направления ЭДС тока и напряжения, используя положительный полупериод тока, при котором ток не изменяет своего направления. При этом картина этих направлений получается аналогичной с цепью постоянного тока.

 

 

 

Законы электрических цепей

Законы электрических цепей


   Ими являются первый и второй законы Кирхгофа.
Первый закон Кирхгофа относится к узлам цепи: в любой момент времени алгебраическая сумма токов в узле равна нулю

 

   где К – число ветвей, подходящих к узлу (три и более).
Токи, подходящие к узлу, и токи, отходящие от узла, имеют противоположные знаки. Будем считать подходящие к узлу токи положительными и брать их в уравнениях первого закона Кирхгофа со знаком (+), а отходящие от узла, – отрицательными и брать их со знаком (−) . Первый закон          Кирхгофа фактически является следствием известного из курса физики принципа непрерывности электрического тока, согласно которому линии тока всегда замкнуты и не имеют ни начала, ни конца.

   Пример 1.1. На рис.1.4,а показан узел цепи с пятью подходящими к нему ветвями. Требуется составить для этого узла уравнение по первому закону Кирхгофа.
   Решение. На основании формулы (1.1) имеем

   Таким образом, всегда сумма токов, подходящих к узлу, равна сумме токов, отходящих от узла.

Второй закон Кирхгофа относится к контурам цепи: в любой момент времени алгебраическая сумма ЭДС всех источников энергии контура равна алгебраической сумме напряжений на всех приемниках этого контура.

где Q – число источников ЭДС в контуре; N – число приемников контура.
Для составления уравнения по второму закону Кирхгофа необходимо предварительно (произвольно) выбрать направление обхода этого контура. Те ЭДС и напряжения, направления которых совпадают с выбранным 9
направлением обхода, считаются положительными и берутся в уравнении со знаком (+), а остальные − со знаком (−).

   Пример 1.2. На рис.1.4,б показан один из контуров сложной электрической цепи. Направления действия ЭДС источников и напряжений на приемниках известны. Требуется составить для этого контура уравнение по второму закону Кирхгофа.
   Решение. Для этого предварительно выбираем (произвольно) направление обхода контура и в соответствии с формулой (1.2) составляем следующее уравнение:

Здесь е2 и е3 , u1 и u2 взяты со знаком (−), так как их направление действия не совпадает с направлением обхода контура; е1, u4 и u3 взяты со знаком (+), так как их направление действия совпадает с направлением обхода контура.

 

Параметры электрических цепей

   Параметры электрических цепей

   Любая электрическая цепь и каждый ее элемент в отдельности обладают тремя параметрами: сопротивлением R, индуктивностью L и емкостью С.
   Сопротивление R характеризует способность цепи преобразовывать электромагнитную энергию в тепловую. Количество тепловой энергии WТ , выделяющееся в сопротивлении R при протекании тока i в течение времени t, определяется соотношением (1.3) и измеряется в джоулях (Дж):

   Величина сопротивления любого элемента цепи определяется как отношение постоянного напряжения на этом элементе к постоянному току в нем и измеряется в омах (Ом):

R = U / I

   Индуктивность L характеризует способность цепи накапливать энергию магнитного поля. Такой способностью обладает любой проводник с током или система проводов. Количество этой энергии WM , накопленной в цепи, зависит от величины тока и измеряется в джоулях (Дж):

   Эта энергия не преобразуется в тепло, а существует в цепи в виде некоторого запаса. Когда ток в цепи равен нулю, запаса энергии магнитного поля в ней нет.
Величина индуктивности определяется как отношение потокосцепления цепи ψ к току и измеряется в генри (Гн)

   Потокосцеплением называется сумма магнитных потоков всех витков катушки. В простейшем случае для катушки на замкнутом стальном сердечнике можно считать, что ее потокосцепление есть магнитный поток Ф, умноженный на число витков w: Ψ = Ф w.

   Емкость С характеризует способность цепи накапливать энергию электрического поля. Такой способностью обладают любые два провода, разделенные диэлектриком, например провод, висящий над землей, любые два провода линии передачи.
   Количество энергии электрического поля WЭ , накопленной в цепи с емкостью С , зависит от величины напряжения между проводами и измеряется в джоулях (Дж):

   Эта энергия не может преобразовываться в тепловую, а существует в цепи в виде некоторого запаса. Если напряжение между проводами отсутствует, то и запаса энергии электрического поля в цепи нет.
   Величина емкости С  определяется как отношение электрического заряда q одного из проводов к напряжению между ними и измеряется в фарадах (Ф):

   В табл.1.2 представлены конструкции некоторых простейших электротехнических устройств и формулы для расчета их параметров. В этой табл.: γ − удельная электрическая проводимость провода (1/Ом⋅м); μa− абсолютная магнитная проницаемость стали (Гн/м); εa абсолютная диэлектрическая проницаемость диэлектрика (Ф/м); l −длина провода, средняя длина стального сердечника, расстояние между пластинами конденсатора (м); S – площадь поперечного сечения провода, площадь поперечного сечения стального сердечника, площадь пластины конденсатора (м 2); w – число витков обмотки; Ф – магнитный поток в сердечнике, измеряемый в веберах (Вб).

Понятие о линейных и нелинейных электрических цепях


Если γ, μa и εa (и следовательно R, L и С ) являются постоянными величинами и не зависят от тока (или напряжения), то такие устройства, называются линейными, а цепи, их содержащие, называются линейными цепями. Именно такие цепи рассматриваются в данном учебном пособии.
Существует, однако, целый ряд устройств, у которых γμa и εa зависят от величин токов (или напряжений). Таковыми, в частности, являются все полупроводниковые приборы, катушки на насыщенных стальных сердечниках, нагревательные устройства с большим диапазоном изменения температур (электрическая дуга, лампы накаливания), конденсаторы с сегнетодиэлектриками. Цепи, содержащие такие устройства, называются нелинейными.

   Свойства нелинейного элемента электрической цепи не могут быть выражены одним постоянным числом и поэтому описываются его характеристикой. Для сопротивлений это зависимости напряжения от тока (вольтамперные характеристики); для индуктивностей это зависимости потокосцепления от тока (веберамперные характеристики); для емкостей это зависимости электрического заряда от напряжения (кулонвольтные характеристики). На рис.1.5 показаны примеры характеристик некоторых линейных (ЛЭ) и нелинейных (НЭ) элементов цепи.    Заметим, что характеристики всех линейных элементов цепи являются прямыми линиями, а нелинейных элементов – кривыми.



 

 

Идеальные элементы электрической цепи

Идеальные элементы электрической цепи


   Любое электротехническое устройство содержит все три параметра: сопротивление R , индуктивность L и емкость С. Рассмотрим (рис.1.6), катушку, выполненную из провода с конечной проводимостью (это может быть и нить лампы накаливания, и обмотка трансформатора или электродвигателя).

   При подаче на ее зажимы напряжения u на концах катушки появляются разноименные заряды (+)q и (−)q и в обмотке начинает протекать ток i. При этом вокруг витков обмотки возникает магнитное поле, характеризуемое потокосцеплением ψ. Таким образом, в соответствии с формулами (1.4), (1.6) и (1.8) рассматриваемая катушка обладает всеми тремя вышеуказанными параметрами.

   Для удобства анализа и расчета электрических цепей вводят в рассмотрение такие элементы, которые при всех условиях обладают только одним параметром: только сопротивлением, только индуктивностью, только емкостью. Они называются идеальными.

   Графическое изображение идеальных элементов электрической цепи показано на рис.1.2 позициями 4, 5 и 6. В природе таких элементов не существует, но есть устройства, по своим свойствам близкие к идеальным. Реостат (резистор) при низких частотах обладает практически только сопротивлением R, а индуктивностью L и емкостью С  этого устройства можно пренебречь. Катушка индуктивности на замкнутом ферромагнитном сердечнике с малыми тепловыми потерями в нем обладает на низких частотах практически только индуктивностью L, а сопротивлением R и емкостью С  такой катушки можно пренебречь. Конденсатор с малыми внутренними тепловыми потерями обладает практически только емкостью С, а его активной проводимостью G и индуктивностью L можно пренебречь.

   Заметим, что реостат, катушку индуктивности и конденсатор широко используют для имитации (моделирования) идеальных элементов при проведении лабораторного практикума по теории цепей.

   Любое реальное электротехническое устройство можно изобразить в виде электрической схемы, состоящей из комбинации идеальных элементов и, следовательно, произвести его электрический расчет. В табл.1.3 приведено несколько примеров изображения реальных устройств в виде электрических схем.

   

Соотношение между током и напряжением в идеальных элементах цепи


   Прежде чем приступать к расчету сколько-нибудь сложных электрических цепей, следует выяснить, каким образом связаны между собой ток и напряжение в каждом из идеальных элементов цепи. Эти соотношения, известные из курса физики, приведены в табл.1.4. Они имеют всеобщий характер и справедливы для цепей, у которых ток и напряжение изменяются во времени по любому закону. Это важнейшие формулы теории цепей, которые встретятся нам много раз в этом учебном пособии ∗. Заметим здесь, что формулы позиции 1 соответствуют закону Ома, формулы позиции 2 вытекают из закона электромагнитной индукции, а формулы позиции 3 следуют из определения электрической емкости.

   Из табл.1.4 видно, что только в сопротивлении R ток и напряжение связаны между собой алгебраическим соотношением. Между током и напряжением в индуктивности и емкости имеют место интегро-дифференциальные соотношения.
   Пример 1.3. В цепи с идеальной индуктивностью (рис.1.7,а) действует пилообразный периодический ток (рис.1.7,б). Требуется определить форму приложенного напряжения.

   Решение. Для нахождения графика напряжения используем соотношение u = di/dt (поз.2 табл.1.4), из которого следует, что форма кривой напряжения соответствует производной от тока по времени. Из курса математики известно, что графически производная di/dt определяется в каждой точке кривой тока, как тангенс угла наклона касательной к этой кривой относительно оси t.
В нашем примере на участке от 0 до T/2 кривая тока представляет собой прямую, проходящую через начало координат под острым углом α 1 < 90° к оси t, и поэтому производная di/dt на этом участке есть постоянная и положительная конечная величина.
На участке от T/2 до Т ток представляет собой прямую, составляющую тупой угол с осью t α2 > 90°, и поэтому производная di/dt на этом участке есть постоянная и отрицательная величина. tgα 2 = tg(180 - α 1) = -tgα 1
   Таким образом, график искомого напряжения представляет собой отрезки прямых, меняющих каждую половину периода свой знак, как это показано на рис.1.7,б.

 Основная задача анализа электрической цепи


Анализ электрических цепей осуществляется с помощью законов Кирхгофа. При этом можно преследовать различные цели. Например, определять напряжения во всех ветвях цепи по их известным параметрам. Можно также определять необходимые ЭДС всех источников энергии по известным токам и параметрам приемников и источников. Для придания нашему курсу логической стройности основной задачей анализа (расчета) будем считать определение токов во всех ветвях цепи по известным параметрам всех источников и известным параметрам всех приемников. Научившись решать эту задачу, мы сможем решать и другие задачи, связанные с анализом и расчетом электрических цепей.